

BBD-003-1164004

Seat No. _____

M. Sc. (Sem. I) Examination

July - 2021

Mathematics: CMT - 4004

(Graph Theory)

Faculty Code: 003 Subject Code: 1164004

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions:

- (1) Attempt any five questions from the following.
- (2) There are total ten questions.
- (3) Each question carries equal marks.
- 1 Answer following seven questions:

 $7 \times 2 = 14$

- Define terms : Odd vertex, Even vertex, Regular graph, k-Regular graph.
- 2. Define terms: Graph, Degree of a vertex, Self loop, Parallel edges (Multiple edges).
- 3. Define terms: Tree, Acyclic graph, Pendent vertex, Pendent edge.
- 4. Give two non isomorphic graphs G_1 and G_2 , which are having properties $|V(G_1)| = |V(G_2)|$, $|E(G_1)| = |E(G_2)|$ and for any non-negative integer t, the number of vertices in G_1 with t degree and the number of vertices in G_2 with t degree are same.
- 5. Give two example of Eulerian graphs G_1 and G_2 , so that G_1 is Hamiltonian graph, while second graph G_2 does not admits any Hamiltonian cycle.
- 6. Define term: Arbitrary traceable from a vertex in an Euler graph.
- 7. Give an example of an Eulerian graph, which has two arbitrary traceable vertices.

2 Answer following seven questions:

 $7 \times 2 = 14$

- (i) Prove or disprove that, any tree T with $|V(T)| \ge 2$ has at least two pendent edges.
- (ii) Prove or disprove that, any tree T with $|V(T)| \ge 2$ has precisely two pendent vertices.
- (iii) Define distance between two vertices in a connected graph.
- (iv) Define term: Eccentricity of a vertex in a connected graph and center of a connected graph.
- (v) Write down at least three facts about dual of a planner graph.
- (vi) Define term: Incidence matrix of a graph.
- (vii) Write down at least three properties of an incidence matrix of a graph G.
- **3** Answer following two questions:

 $2 \times 7 = 14$

- (a) Let G be a finite graph. Prove that there are subgraphs $g_i = (V_i, E_i), i = 1, 2, \dots, k$, for some $k \ge 1$ such that,
 - (i) Each g_i is a maximal connected subgraph of G.
 - (ii) $V_i \cap V_j = \emptyset, i \neq j \text{ and } i, j \in \{1, 2, ..., k\}$
 - (iii) $V = V_1 \cup ... \cup V_k$ and $E = E_1 \cup ... \cup E_k$.
 - (iv) If g = (W, F) be any connected subgraph of G, then g must be a subgraph g_i , for some $i \in \{1, 2, ..., k\}$.
- (b) Let G=(V,E) be a graph. Prove that, G is a disconnected graph if and only if there are two disjoint subsets V_1 and V_2 of V such that, (i) $V=V_1\cup V_2$ and (ii) there is no edge uv in G, whose one end vertex lies in V_1 and another end vertex lies in V_2 .
- 4 Answer following one question:

 $1 \times 14 = 14$

Let G be a connected graph. Prove that, it is an Euler graph if and only if its all the vertices have even degree.

5 Answer following two questions:

 $2 \times 7 = 14$

Prove that, for a separable graph G, v is a cut vertex in G if and only if there are two vertices
 x, y ∈ V (G) - {v} such that every path in G between x and y passes through v.

2. Let
$$X(G) = \begin{bmatrix} 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \end{bmatrix}$$

be an adjacency matrix of a graph G. Find $Y = X + X^2 + X^3 + X^4$, where X = X(G). Determine G is a connected graph or it is not a connected graph.

6 Answer following two questions:

 $2 \times 7 = 14$

- (a) Let G be a connected graph and S is a cut set for G. Let T be a spanning tree for G. Prove that, $S \cap E(T) \neq \emptyset$.
- (b) Let G be a connected graph and S be a cut set for G. Let F be any cycle in G. Prove that, $\left| E(F) \cap S \right|$ is even.
- 7 Answer following two questions:

 $2 \times 7 = 14$

- 1. Prove that, a graph G is a minimally connected graph if and only if it is a tree.
- 2. Prove that, a connected graph G, admits a spanning tree.
- 8 Answer following two questions:

 $2 \times 7 = 14$

- (a) For a tree T, with |V(T)| = n, prove that, T has n-1 edges.
- (b) Let G be a connected graph and it satisfy |E(G)| = |V(G)| 1. Prove that, G is a tree.

9 Answer following one questions: 1×14=14

Define term: Maximal non-Hamiltonian graph. Also State and prove Dirac's Theorem.

10 Answer following two questions:

 $2 \times 7 = 14$

- (i) Let u and v be distinct vertices of a tree T. Prove that, there is a unique path P between u and v in T.
- (ii) Let G be an acyclic graph with n vertices and k components. Prove that, G has n-k edges.

4